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Fields as Kolmogorov Flows 

B. M i s r a  1 

It is widely recognized that for highly unstable dynamical systems there exists a 
fundamental limitation on predictability and determinism. An important class of 
such highly unstable systems is the class of K-flow, which is further charac- 
terized by the existence of time-asymmetric objects in the form of K-partition. 
Our recent approach to the problem of irreversibility has shown that when the 
implications of the limitation on determinism arising from strong form of 
instability and those of the existence of K-partition are consistently taken into 
account, one is naturally led from the physically unrealizable deterministic 
evolution of phase points to an entropy-increasing stochastic Markovian 
evolution. Furthermore, this transition is not the result of extraneously imposed 
coarse graining and/or approximation schemes, but can be brought about by an 
invertible transformation whose existence and construction are determined by 
the nature of the instability of the dynamical system itself. After a brief review of 
this theory which also contains some relatively new remarks, we prove that 
classical Klein-Gordon field (both massive and massless) possess the structure 
of K-flow. This seems to provide the first examples of relativistic systems that 
are K-flows. Some of the implications of this result are briefly discussed. From a 
mathematical point of view, this seems to be a first step toward an ergodic 
theory of partial differential equations. In the process, we also provide an 
independant group-theoretic proof of the existence of incoming and outgoing 
subspaces of the scattering theory of Lax and Phillips for the wave equation. 

KEY WORDS:  K-flows; A-transformation; wave equation incoming-out- 
going subspaces. 

1. I N T R O D U C T I O N  

The broken time symmetry implied by the laws of monotonic increase of 
entropy appears to be of far more fundamental significance in physical 
theories than previously realized. It is an understatement to say that Prof. 
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I. Prigogine has taken a leading role over a period of more than three 
decades in the quest of the dynamical origin of this broken time symmetry. 
Not only do his own ideas and work mark significant turning points in this 
search, but also his characteristically insightful and optimistic appreciation 
of the work of others have encouraged many to pursue this continuing 
quest. Having benefitted both from his inspiring ideas and his constant, 
unfailing encouragement, it is with a feeling of joy and honor  that I 
dedicate this essay to him to celebrate his 70th birthday. 

As a result of advances in modern ergodic theory and the theory of 
dynamical systems, it is now widely recognized that, for systems (such as 
K-flows) whose motion exhibits a high degree of instability (i.e., sensitive 
and irregularly discontinuous dependence on initial conditions), there is a 
fundamental limitation on the deterministic description of time evolution in 
terms of motion of phase points along phase space trajectories. This 
limitation is, in fact, as fundamental (but, of course, of distinct physical 
origin) as the limitation on physical realizability of phase space trajectories 
arising from the quantum uncertainty principle. And this limitation can 
occur even for macroscopic systems for which the limitation arising from 
quantum principles is negligible. 

These points are, indeed, so well recognized today that they hardly 
need further elaboration. 2 What is, however, not sufficiently emphasized is 
that, since (for systems exhibiting a high degree of instability) the 
limitation on the physical realizability of deterministic evolution along 
phase space trajectories is fundamental in character, the concept of the 
deterministic motion of phase points should be eliminated from the 
theoretical description of time evolution of such systems. 

It is just this point (namely, the elimination of deterministic motion of 
individual phase points from the theory) that forms the starting point of 
our recent approach to the problem of broken time symmetry. (3 15) This 
elimination cannot, however, be achieved simply by replacing the motion 
of individual phase points by the Liouvillian evolution of Gibbs 
distribution functions, for the simple reason that the Liouville equation is 
obtained on the basis of the deterministic motion of individual phase points 
that we are attempting to eliminate from the theory! (Moreover, the 

2 See, e.g., Lighthill, ~ especially p. 47, where he writes, "A fundamental uncertainty about the 
future is there, indeed, even on the supposedly solid basis of the good old laws of motion of 
Newton." Although the recent upsurge of interest in chaotic dynamics has brought to light 
many and often unexpectedly simple systems whose motions are highly unstable and has 
thus furthered the wider recognition of the fundamental limitations to predictibility and 
determinism arising from the high degree of instability of motion, this limitation had been 
recognized much earlier. See, e.g., Feynman, ~2) who stressed that in Newtonian theory, if the 
initial conditions of a complex system are known to a certain accuracy, then all the accuracy 
is lost in less time than it takes to state that accuracy in words! 
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Liouvillian evolution does not, of course, break the symmetry between the 
two directions of time.) 

At this point, the conventional approach to the problem of irrever- 
sibility introduces extraneously some form of coarse-graining or contrac- 
tion of description and certain approximation schemes (such as the weak 
coupling limit, Boltzmann-Grad limit, etc.) in order to arrive at an 
evolution equation with broken time symmetry. (16) 

The viewpoint of our approach is, however, radically different from 
that of the conventional approach. For, we seek, not to explain the broken 
time symmetry as arising from approximations or coarse-granning 
introduced extraneously into the dynamics, but to introduce the broken 
time symmetry as a fundamental physical principle and to investigate 
fundamental implications of this principle. ~176 

To achieve the desired elimination of deterministic motion of phase 
points from the theory of time evolution of highly unstable systems, and to 
arrive at a theory of broken time symmetry, we have to take into account 
another important feature of instability characteristic of the K-flows. 
Roughly speaking, a K-flow is characterized by the existence of a nontrivial 
partition (called K-partition) of the phase space, which has the property 
that under dynamical evolution the partition becomes progressively finer as 
time increases (toward the future), with each cell of the partition 
contracting asymptotically to a point for t ~ oo. On the other hand, if the 
dynamical evolution is extrapolated toward the past, the K-partition 
becomes progressively coarser as we extrapolate toward more and more 
remote past. 

The property of the K-partition just mentioned shows that with 
increasing time it should become increasingly more difficult to distinguish 
the points belonging to the same cell of the K-partition, since they come 
closer to each other and merge into each other asymptotically for t --. + ~ .  

It is remarkable that when the existence of an intrinsically time-asym- 
metric object, the K-partition, and the increasing degree of difficulty of 
distinguishing the points in the same cell as time increases (in the forward 
direction) are consistently taken into account, one is naturally led from the 
deterministic evolution of the system to an entropy-encreasing probabilistic 
Markovian evolution. What is noteworthy about this passage from deter- 
ministic evolution to entropy-increasing stochastic evolution is that it is not 
the result of extraneously imposed coarse-graining or approximation 
schemes, but can be brought about by an invertible transformation whose 
existence and construction are determined by the intrinsic nature of the 
instability of the dynamical system. 

Somewhat more precisely, let S, denote the group of transformations 
describing the deterministic motion of phase points co of a K-flow and let 
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Ut be the unitary group induced from St that describes the Liouvillian 
evolution of Gibbs density functions p: 

(utp)(o)=p(s_tco) 

Then, it can be proved that there exists a bounded transformation A 
having the following properties: (i)If p is a (Gibbs) probability dis- 
tribution, then so is Ap; and (ii)it satisfies the inertwining relation 
AU, = W,A, with a semigroup W,, which describes the evolution of Gibbs 
distribution function under a Markov process for t >~ 0 and such that the 
(negative) entropy ~(Wtp) log(Wtp)d#  is a monotonically decreasing 
function of time. Moreover, A can be chosen so that it has an unbounded 
(but densly defined) inverse A-  1, in which case W, is nonunitarily similar 
to U,:W,=AU,  A -~ for t>~0. 

In explanation of property (ii), it may added that W t is such that 
P( t , o ,A )  defined by P(t, co, A)=(W*~0~)(m) satisfies all the properties 
(including the Chapman-Kolmogorov equation) required of the transition 
probability (from the phase point co to the region A in time t i> 0) of a 
genuinely stochastic Markov process. Here W* denotes the Hermitian 
conjugate of W, and (p~ denotes the characteristic function of the region A. 
For more details the reader should consult the work cited earlier, especially 
Refs. 4-8. 

It is not known if the K-flow property is also necessary for the 
existence of such an invertible transformation A. It is known, however, that 
the mixing property is necessary and that A does not exist for a more stable 
dynamical evolution than the mixing systems. 

The underlying viewpoint of this result is that not all (Gibbs) 
probability distributions p can be physically prepared, but only a proper 
subset of them that are of the form Ap are physically realizable and the 
probabilitistic evolution Wt (for t>~0) that maps this class of physically 
realizable states into itself describes the physical evolution of the K-flows. In 
this approach, then, the origin of the monotonic increase of entropy is the 
instability of motion of the type exhibited by the K-flow, which on one 
hand renders the deterministic description of motion to be an unphysical 
idealization and in addition implies a limitation on physically realizable 
states. 

Let us mention here that this result on the existence of invertible A for 
K-flows and its nonexistence for stable evolutions establishes rigorously the 
mathematical and physical consistency of an important idea, first discussed 
by Prigogineetal. (17) that the time-reversible dynamical evolution and 
entropy-increasing semigroup evolution of physical systems could be 
related through a nonunitary similarity transformation. 

Since it is still widely supposed that repeated collisions are essential for 
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entropy increase, it is worthwhile to mention that according to the theory 
sketched here, entropy increase can occur even in the absence of collisions. 
This is because, as stated before, the origin of entropy increase is the form 
of instability that is characteristic of K-flows, and such instability can occur 
even in the absence of collision; as, for example, in the case of geodesic flow 
in compact Riemannian space of constant negative curvature, In fact, it can 
be shown that if the spatial curvature of the universe is negative and its 
spatial hypersurface compact, then the free (geodesic) motion of inter- 
galactic gas is entropy-increasing, even though molecular collisions are 
extremely rare due to the extremely low density of intergalactic gas. (18) It 
may be mentioned in this connection that the possibility of entropy 
increase in the absence of collisions has been recently considered by 
Lighthill, (11 who cites the phenomenon of the so-called "bow shock wave" 
in the solar wind as a possible example of such a collisionless entropy- 
increasing phenomenon. 

In view of the important role of the K-flow property in the theory of 
irreversibility, it is of obvious importance to study systems of physical 
interest that exhibit this property. Many physically interesting systems, 
such as the hard-sphere gas in a box, the Lorentz gas model, (19-21) the 
infinite harmonic lattices, (22 24) and the previously mentioned example of 
geodesic flow in compact space of negative curvature, (~5"26~ are known to be 
K-flows. The main purpose of this article is to show that relativistic (free) 
fields also belong to this class. (Actually, I shall consider only the case of 
massless and massive Klein-Gordon field. A more detailed development of 
this work will be presented in a forthcoming publication in collaboration 
with I. Antoniou, where the case of electromagnetic field as well as the field 
of gravitional waves, etc., will also be considered.) 

In the concluding section, I briefly discuss some of the implications of 
the result. Here, I note that this result implies that the assumption that 
Cauchy data can be arbitrarily specified and that their deterministic time 
evolution in accordance with the field equation can be followed constitutes 
an unphysical idealization. Indeed, even independent of this result, the 
problematics of the operational meaning of specifying Cauchy data (on a 
spatial hypersurface) is far more complicated that the problematics of 
specifying initial conditions of classical systems with finite degrees of 
freedom. I briefly return to this point in the concluding section. 

This work also seems to provide the first examples of relativistic 
systems that are K-flows. Therefore, it can serve as the basis of studying the 
relativistic transformation properties of irreversible semigroup evolution 
law as well as of the related internal time operator. Finally, from a 
mathematical point of view, this work seems to be a first step toward an 
ergodic theory of partial differential equations. (28) 
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2. K - F L O W S  A N D  I N T E R N A L  T I M E  O P E R A T O R  

In order to prove the K-flow property of Klein-Gordon field, we shall 
need a characterization of K-flow (27'28) in terms of the existence of the so- 
called internal time operator given below. To formulate this criterion, we 
shall introduce the notation (~2, ~,/~, S,) to denote an (abstract) dynamical 
system. Here (f2, ~ ,  #) denotes a probability measure space and St denotes 
a group of (measurable) transformation of (2 onto itself under which the 
measure # is invariant. 

Physically, f2 represents (a constant energy surface of) the phase 
space, S, represents the group of dynamical motion, and # is invariant 
(Liouville) measure, which is defined on a suitable a-algebra ~ of subsets 
of g2, the measurable subsets. For convenience, /~ is normalized so that 
~(~) = 1. 

Let P ~ denote the one-dimensional projection in 5~ on to the unit 
function 1 (the microcanonical ensemble) and .240 the subspace of s176 that 
is orthogonal to the unit function 1. The desired criterion can now be 
formulated as follows. 

Theorem.  In order that the dynamical system (s N', #, S,) be a 
K-flow, it both necessary and sufficient that there exists a self-adjoint 
operator T (called the internal time operator) having the following proper- 
ties: 

(a) U*TU,= T+t I  on Jr ,  where U, denotes the unitary group 
induced from St: 

(U,f)(~o) = f(S_,c~) 

(b) If F;. denotes the spectral projections of T, i.e., T = ~ + ~  ;~dF> 
then the projections P~.= Fx + P-o~ map the class of Gibbs probability 
distributions into itself, i.e., Px preserve positivity and probability 
normalization of functions. 

We need not stop here for a detailed proof of this result, which was 
stated in Ref. 18. Let us only mention that the necessity of the existence of 
such a T for K-flows follows from the considerations of Ref. 3. Condition 
(b) was noted stated explicitly in that work, but it follows from the fact 
that P~. is constructed to be the projection of conditional expectation with 
respect to the partition S;~o (or the associated ~r-algebra), where 4o is the 
K-partition (see Lemma 2(7)). The sufficiency, on the other hand, follows 
from a rephrasing of the considerations in Ref. 13. In fact, if such an 
operator T exists, then the family of projections P;. satisfies, in addition to 
condition (b), the following properties: 

(i) P~>P. if)~>p. 
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(ii) lima+ +o~ P;. = I and l imj~ co P). = P-o~. 

(iii) U,P;+U* = P~.+,. 

[Condition (iii) is equivalent to condition (a) on T and the fact that P _ ~  
commutes with U,.] 

Now, condition (b) implies that the projections Px are the projections 
of conditional expectation with respect to partitions ~. of f2, (~9> and 
condition (iii) in conjunction with (i) entails that S,~;+=~;.+, and g~+t is 
finer than ~. (for t>0) .  Conditions (ii) (lima+ + ,  P~+=I) imply that the 
coarsest partition that is finer than all ~;. is the partition of the phase space 
into points and similarly the condition Px ~ P ~ as t ~ - o e  implies that 
the finest partition that is coarser than all partitions 4;+ is the trivial 
partition whose cells are of either measure 0 or 1. Thus, the partition 40 
corresponding to the projection Po has all the properties of a K-partition 
and the dynamical system is a K-flow. 

A family of projections P;. satisfying condition (b) and conditions 
(i) (iii) may be called a system of imprimitivity of conditional expectations 
for the dynamical group U,. The above theorem may be rephrased to say 
that the K-flow property of a dynamical system is equivalent to the 
existence of a system of imprimitivity of conditional expectations with 
respect to the group of the dynamical motion. 

As a digression, I note that this rephrasing is useful because it allows 
one to formulate a quantum analogue of K-flow instability in terms of the 
existence of a system of imprimitivity of (noncommutative) conditional 
expectation (on the algebra of observables) for the group of auto- 
morphisms describing the Heisenberg evolution of observables. If such an 
imprimitivity system of noncommutative conditional expectations exists, 
then one can also define a form of K-partition of the phase space (which in 
the quantum case would be the space of all pure states or indecomposable 
positive linear functionals on the algebra of observables) such that under 
dynamical evolution the points on the same cell approach each other with 
increasing time in the sense that all the points on the cell assign the same 
expectation value to each of the operators belonging to progressively 
growing subalgebras of the algebra of all observables. The time-inverted 
states of a cell of the K-partition, on the other hand, grow progressively 
more apart from each other with time progressing toward the future. Thus, 
the existence of an imprimitivity system of (noncommutative) conditional 
expectations for the Heisenberg evolution of operators does express a form 
of instability of the dynamical evolution of operators. Since my aim here is 
to prove the K-flow property of fields considered as classical systems, I 
shall not elaborate further on this, but only refer to Ref. 15. There some 
steps toward developing this idea are taken and a theory of the quantum 



1302 Misra 

measurement process is given that avoids the well-known difficulties of 
earlier theories, especially Bell's reversibility argument. (3~ 

Before closing this section, I note the construction of A in terms of the 
internal time operator T. This will permit us to show how the transfor- 
mation A and the resulting entropy-increasing evolution W, consistency 
take into account the progressively increasing difficulty of distinguishing 
the points of a given cell of the K-partition as the cell contracts under the 
dynamical evolution with increasing time, whereas the physically 
unrealizable deterministic evolution not only fails to do so, but does the 
opposite. The transformation can actually be constructed as a suitable 
decreasing function of the internal time operator T. More precisely, 

A = f h(2) dF~ + P 

where h(2) is a suitable function monotonically decreasing to 0 for 
)~ ~ +oe. For the precise conditions on h(2), see Ref. 7. It will suffice to say 
here that a possible choice of h(2) (for K-flows of finite Kolmogorov-Sinai 
entropy), for which some physical motivations can be advanced, is 

1 
h(2) - 1 + e ~ "  

Here K denotes the Kolmogorov-Sinai (KS) entropy of the system. This is 
the function adopted in defining A in the considerations given below. 

A precise definition of KS entropy need not be given hereJ 27'28~ I only 
mention that the KS entropy is (at least under some smoothness 
hypothesis about the flow) the phase space average of Liapounov 
exponents characterizing the (exponential) divergence of the phase space 
trajectories of neighboring initial conditions. Physically, it thus serves as a 
measure of the limitation to the deterministic description of time evolution. 
The KS entropy can also be related to rate of entropy production. (3~) 

Let us now see how the evolution under W,=AUtA -t  of Gibbs 
distribution functions Ap takes into account the progressively increasing 
difficulty of distinguishing the points in the same cell of the K-partitions as 
it contracts with increasing time, while the deterministic dynamical 
evolution fails to do so. As mentioned earlier, the projection P~. is the pro- 
jection of conditional expectation with respect to the partition ~ =  S).~o 
into which the K-partition evolves in time )~. For a given Gibbs density 
function p, the part P~p is thus a measurable function with respect to the 
a-subalgebra ~ (of~) ,  which contains only the sets that are formed from 
unions of complete cells of the partition ~x. This being so, the part P~.p 
cannot take different values in the points of any given cell of ~a and hence 
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it cannot distinguish the points on any given cell of ~?. Since ~u is finer 
than ~ for # > 2, P~p cannot also, afortiori, distinguish the points on the 
same cell of :,, with # ~> 2. Thus, the part of p that can possibly distinguish 
the points on the same cell of any partition ~, with it > 2 is p-- P~p. The 
dispersion or mean square deviation of p-P~.p may be taken as an 
indicator of the degree of difficulty (or, rather, of ease) with which one can 
achieve the desired distinguishability: the smaller this dispersion, the greater 
the degree of difficulty of achieving the desired distinguishability with the 
given p. 

This quantity is easily seen to be 

fo ( p -  P~P)2(~~ l iP-  P;.PJl 2= Y7 dF~p 2 

(the mean value of p -  P~p is, of course, zero). 
If the evolution of p is described by Ut obtained from the deterministic 

evolution of the phase points, then the degree of difficulty of achieving the 
desired distinguishability of points belonging to any partition ~ with # ~> 2 
is 

HU, p-P;U~pl]2=jrp-U*P:Utplt2=lpp-P;_,pH2= f~_,dF~p 2 

Here the first equality follows from the unitarity of U,, and the second 
equality makes use of the imprimitivity property (iii) of P~. Since 

dF ; s /> for t~>O 
t 

it follows that if p evolves under U,, then with increasing time it would 
become progressively easier to achieve the desired distinguishability! This 
conclusion is of course an expression of the fact that for highly unstable 
systems such as K-flows the deterministic description of motion constitutes 
an unphysical idealization and it is the dynamics itself that is pointing to its 
own limitation. 

The situation is completely different for the transformed state Ap and 
the entropy-increasing evolution W,. The indicator of difficulty of dis- 
tinguishing the points in a cell of ~, with/~ >7 2 > 0 with the state p is again 

f o I 2 IIP~Ap-Apll2= IM(P;P-P)tl2= 1 +7 -~'de~p 

dF~p < e -2Kx 
~ ~ ~ - t  , - t  
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Since it follows from the above inequality that I[P;Ap-Apl[  2 is smaller 
than the corresponding quantity for p by at least the exponential factor 
e-2K;; it is exponentially more difficult to achieve the desired discernability 
with Ap than with p. 

More importantly, under the evolution W, to which the transfor- 
mation A leads, the degree of difficulty of achieving the distinguishability of 
the points belonging to a contracting cell increases progressively with 
increasing time, in complete contrast to the previously mentioned 
unphysical behavior of U, in this regard. This follows from the fact that the 
semigroup W, is known to be a so-called monotonic Markov semigroup, 
which satisfies the following condition: q]WtAp - 1]] 2 decreases strictly 
monotonically to zero as t ~ ~ .  It thus follows that 

I ]WtAp-  P:~ W~AplI2= ][W, A p -  1 + 1 - P:~ W~ApH 2 

<~ 1[ WrAp - l l[ 2 + [I l - P:. WrAp H 2 

Since P;1 = 1 and []P)~II = 1, it follows from the above that 

[I W, Ap - P)~ W, ApH 2 ~ 2 II WrAp - 1 II 2 

Since the right-hand side decreases strictly monotonically to zero as t ~ 0% 
the desired assertion of progressively increasing degree of inability to 
distinguish the points of the contracting fibers follows. It can further be 
shown that this increase in the degree of operational indistinguishability we 
are discussing is exponential for a large class of states Ap, corresponding to 
the fact that for this class of Ap, the expression IJW~Ap-ljJ 2 decreases 
exponentially fast to zero with increasing time. In fact this class consists of 
all the states of the form A ( I - F , ) p  with g any finite number. There are, 
however, states Ap for which the rate of decrease of II W, Ap-11[ 2, which 
may be taken as a measure of the rate of approach to equilibrium state 1, is 
slower than exponential. (32) 

The preceding discussion should make it clear that the natural 
requirement that the physically realizable states and their physical 
evolution should be such that with their aid the operational difficulty of 
distinguishing the points on the contracting K-cells should increase 
progressively with time (for t-~ oe) is closely related and consistent with 
the necessity of the passage from the dynamical evolution Ut to the 
evolution W, under which the states approach monotonically to the 
microcanonical ensemble. As said before, the origin of irreversibility 
(corresponding to monotonic increase of entropy) is thus directly traced to 
K-flow instability as expressed by the existence of the K-partition. 

The existence of the internal time operator T, apart from its usefulness 
in serving as the characteristic property of K-flows and in the construction 
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of A, is of intrinsic physical interest. In fundamental physical theories, be it 
classical dynamics, quantum theory, or relativity, time appears only as an 
external parameter and not as a dynamical variable. For  example, it is 
meaningless to ask in these theories about the (average) age of a given 
state. This fact is highlighted in the usual formulation of quantum theory, 
where one cannot get a meaningful answer about the probability that an 
unstable particle prepared at time t = 0 will stay undecayed throughout an 
entire time internal, say [0, t], or about the probability that it will decay at 
some point belonging to a given time interval. (This is related to the so- 
called quantum Zeno effect or paradox. (33'34) 

The existence of an internal time operator allows one to associate an 
(average) age (T)~ 0 to states Ap given by the formula 

( T )  A p = ( Ap, TAp )/ ( Ap, Ap ) 

The defining condition (a) of internal time just expresses the fact that the 
average age of states increases under the dynamical evolution Ut in step 
with the external time parameter t. 

The operator T cannot, however, serve as the age operator for the 
evolution HI,, for the simple reason that (WrAp, TW~Ap)/( WtAp, W, Ap) 
is not necessarily larger than (Ap, TAp)/(Ap, Ap) for t~>0. 

In other words, the average age will not necessarily advance in the 
same direction as the external time parameter t. The operator T/A2= T' 
has, however, the required property that under the evolution HI,, the 
average age defined in terms of T '  will increase with the increase t (for 
t > 0), although not linearly with t. It may be mentioned that if the nor- 
malization factor in the definition of average age (the denominator in the 
definition of (T)Ap o r  ( T r ) A p )  is omitted, then the average age defined 
with T and T'  will increase linearly with t under the evolution Ut and Wt, 
respectively: the scale of linear increase will, however, depend on the initial 
state. As a final remark in this connection, I mention that the internal time 
operator of quantum systems (which can be defined, if at all, only as a non- 
factorizable operator acting on density operators that does not preserve the 
purity of states (~4) can be shown to satisfy the much discussed time-energy 
uncertainty relation of quantum mechanics. (35) 

3. K-FLOW STRUCTURE OF RELATIVISTIC FIELDS 

We come now to the main result of this paper: The demonstration of 
the K-flow structure of the fields. As said before, I shall outline the 
argument only for a real Klein-Gorden field ~b(x, t) satisfying the equation 

02~ 
c~t2 = A~b - m2~b 
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To this end, we have first to define a suitable phase space for the system 
and a probability measure /t on the phase space that is invariant under 
time evolution. The existence of a time operator with the properties men- 
tioned in the last section, or equivalently the existence of an imprimitivity 
system of conditional expectations in ~ 2 ,  will then establish the K-flow 
property of the field. 

For phase space it is natural to take some suitable class of initial 
Cauchy data or equivalently the associated set of solutions of the field 
equation, there being a well-known one-one correspondence between 
initial Cauchy data and the solutions of the field equation. For  our purpose 
it will be more convenient to work with the solutions. 

As is well known every real solution ~b(x, t) = ~b(x) of the K G  equation 
can be written in the form 

fk e'*~(k) dBk d 3 = dk~ dk 2 dk 3 (1) 

Here x and k stand for four-vectors (Xo = t, x l ,  x2, x3) and (ko, kl, k2, k3) , 
respectively; kx = koxo-k ' x ,  where k and x are the spatial three-vectors 
of k and x, respectively, and k 2 = k  2 -  Ik{ 2. The function ~(k) on the two 
hyperboloids defined by the condition k 2 = m  2 is required to satisfy the 
condition 

- k )  -- k) 

which guarantees that the solution is real-valued. 
If the functions ~(k) are restricted by the condition 

d3k 
fk2=m2 I~(k)t2~-o < oo 

then it is well known that the corresponding set of solutions form a real 
Hilbert space Y~R when the inner product @, 0 )R  of the solutions ~b(x) 
and 0(x) expressed in terms of the corresponding functions ~(k) and ~(k) 
is given by the formula 

d3k r 
Ikol 

This real Hilbert space of solutions can, of course, be described also in 
terms of the initial Cauchy data corresponding to the solutions. However, 
the expression of the scalar product ( , )R is somewhat complicated when 
expressed in terms of initial Cauchy data and we do not need them here. 
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What is important for us is the well-known fact that the operators U(,,A) on 
~"~R defined by the relation 

( U(a,A)q3 )(X) = (b( A - l ( x  - a) ) 

provide a unitary (orthogonal) representation of the Poincar6 group. Here 
A stands for a Lorentz transformation, and a represents four-vector trans- 
lation. The (anti-self-adjoint) generators of this representation are well 
known and satisfy the well-known commutation relations of PoincarS-Lie 
algebra. We need not write them down here. 

To fix our notations, let us denote by U ~ - e  P~ the group of time 
evolution whose action on r x) e ~ is given by 

u~( t ,  x )=r  + ~, x) 

Thus, the anti-self-adjoint generator Po of time evolution is the operator 
8/8t, and (Po) 2 = 82/8t 2 = A - m2I on the space of solutions. Similarly, let pi 
( i=  1, 2, 3) and N i be the anti-self-adjoint generator of spatial translation 
and boost along the xi direction, respectively; i.e., 

{ [exp(P~t)]~b }(t, x) = if(t, x - ct) 
{ [exp(~'iN')]~b }(x) = q/(A -lX) 

where A is the boost with velocity v = tanh ~ (c = 1) along the xi direction. 
Then these generators satisfy the commutation relations 

[P", PU] = O, #, v = O, 1, 2, 3 

IN', p0] = _ p i  

IN t, p / ]  = _~//pO 

Moreover, 
3 

(Po~ 2= ~ ( P i ) 2 - m : = A 2 - m 2 I  
i = l  

It can be easily verified that 

U tNiU~ = e-e~ e~ = [e -e~ Ni] + N i= N i -  t U  

On the other hand, U(P~ -2 commutes with Ut. Thus, the operator 
N~(U(P~ -2) (with summation with respect to repeated i, 1, 2, 3, implied 
henceforth) satisfies the relation 

U tN~[U(P~ -2]  U, = N~EPi(P~ -2]  - t [PI2(P~ -2 
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where we have used IPI 2 to denote 323=1 (pi)2. Using the fact that 

(pO)2 = ipl2 _m2i 

we can rewrite the above relation to read 

U_,N,[U(pO) 2] U, = N~[U(P~ -2] - tI + t - -  
m 2 

(pO)2 (2)  

Because of the anti-adjointness of the generators [i.e., (Ni) *, etc., where the 
dagger signifies Hermitian conjugation with respect to the inner product 
( , ) R ] ,  it follows that (Ni[U(P~176 i, and, since 
U,*= U_t, by taking the Hermitian conjugate of both sides of Eq. (1), we 
obtain 

U_,[ U( P~ -2] N~Ut = [U(P~ -23 N ' -  tI + t - -  
Fy/2 

(pO)2 

Thus, the self-adjoint operator 

T~= ~ N'U(P~ +2 U(P~ 2 N ~ 
i=1 

satisfies the relation 

U ,TRU,=T~- t  I -  (3) 

Actually, the operator T' is shown to be Hermitian only. Using the known 
domain properties of the generators of the Poincar6 group, it can be shown 
that it is densely defined and it is known that such operators in a real 
Hilbert space always have a self-adjoint extension. (37) By T' we shall mean 
such a self-adjoint extension. 

The relation (3) shows that TR = --T~ satisfies condition (a) of the 
time operator for the evolution Ut of a massless KG field. Moreover, even 
for a massive field 

- i7m 2) U tTRUt=TR+t( I+  mZ 

and therefore if the average age of a solution ~ b ~  is defined by 
(~b, T~b )R/(~b, ~b )R, it will increase under the evolution U, linearly with the 
increase of the external time parameter t, although the scale of this linear 
increase will depend on ~b due to the presence of the positive operator 
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m 2 / ( - A  + mS). Thus, even for a massive K G  field the operator T acts as a 
generalized time operator, which allows one to associate average to 
solutions (or equivalently initial Cauchy data) of the field equation. 

As a passing remark, let us note that for a massless field 

[ ~  1 3 N,p,(p0):l, p0 = y~ IN', po] e,(e0)-~= _po 
i 1 i=1 

This is the same commutation relation as that between the generator' 
D of dilatation or scale transformation and pO, 

[D, pO] = _ p o  (4) 

Thus, for the massless field the time operator is: 

TR = - [ D ( P ~  -1 + (pO)-i D]  (5) 

The dilatation generator D is, of course, defined as an operator in 
even for a massive field and satisfies the commutation relation (4). From 
this, it can be shown that the operator TR defined by relation (5) will 
satisfy the relation 

U ,TRU,=e-e~  P~ T R + tI (6) 

even for a massive field. However, in this case the operator D is not anti- 
self-adjoint, corresponding to the fact that the Poincar6 invariant measure 
d3k/lkol on the hyperboloids is not invariant under the action of dilatation 
group for given fixed mass m r  which is, of course, equivalent to the 
known fact that the massive Klein-Gordon equation is not invariant under 
the dilatation group unless one also allows the mass m to change under the 
transformation. Since D is not anti-self-adjoint, the operator defined 
through relation (5) is not self-adjoint for the massive Klein-Gordon field, 
although it satisfies the required relation (5) for time operator. In fact, for 
the massive Klein-Gordon field there cannot exist a self-adjoint operator T 
satisfying the required relation (6). 

The existence of a self-adjoint operator T satisfying the relation (6) for 
the massless K G  equation is not sufficient by itself to prove the K-flow 
property. For  we have not yet even formulated the defining condition (b) 
of internal time operator given in the previous section. In other words, we 
have not defined a probability measure on ~ which is invariant under the 
evolution U, and have not shown that the projections Px = F~. + P-oo are 
projections of conditional expectations, where F~ are the spectral projec- 
tions of the operator T R that act on functions on ~ and are induced from 
the action of YR on elements in ~%'~R. As a matter of fact, such a measure 
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cannot exist on x/Y R . This can be seen from the fact that the internal time 
operator, when it exists, cannot be a transformation induced from a point 
transformation mapping the phase space into itself. Let us, however, give 
an independent proof of the nonexistence of an invariant measure on HR. 

P r o p o s i t i o n .  There exists no measure g on the (real) Hilbert space 
HR satisfying the condition ~ Ilfll2d#(f)<oo for every f e H R  that is 
invariant under the evolution group U,. 

The proof follows from a known result (39) that if/~ has the property 
states in the proposition, then for any two given elements gl and g2 in 

f. <f, gl)R(f, g2)R dg(f)= (gl, Ag2>u 
R 

where A is necessarily a Hermitian, nonnegative nuclear operator. Thus, if 
the measure were invariant under Ut, we would have 

(gl, Ag2)R =f~"R 

f afR 

--f.R 

(f, g~)R(f, g2)Rd#(U~f) 

( U_tf, g, )R ( U-tJ', g2)~ d#(f) 

(f, U,g~)R(f, U, g2)Rd#(f) 

=(U,g~,AU, gz)R=(g~,U ~AUtgz)~ 

for any g~, g2 6 2tO'R- 
This is possible only if U, commutes with A and hence also with the 

projections to its eigenspaces. Since A is nuclear, it has (at least one) finite- 
dimensional eigenspace. The unitary operator U,, on the other hand, has 
absolutely continuous spectrum and hence it cannot commute with finite- 
dimensional projections. It may noted that all Gaussian measures on HR 
satisfy the condition on /, stated in the proposition. Thus, in particular, 
there is no invariant Gaussian measure on HR. 

These considerations, then, show that in order to obtain an invariant 
measure and to proceed further in demonstrating the K-flow structure of 
fields, we have to consider a larger space than the space HR as phase space. 

Before discussing this, it should be mentioned that the existence of the 
time operator TR in HR for the wave equation is equivalent to the existence 
of the so-called outgoing and incomming subspaces, which play important 
roles in the beautiful theory of scattering developed by Lax and Phillips33~) 



Fields as Kolmogorov Flows 1311 

In fact, if E;~ represents the spectral projections of T R and D the range of 
Eo, then D_ has the properties of the incoming subspace of the Lax- 
Phillips theory. Conversely, if an incoming subspace exists and Fo denotes 
the projection onto it, then the projections F). defined by Fz= U;FoF_). 
(where Ux is the time evolution unitary group) constitute the spectral pro- 
jection of a time operator T that satisfies U_~. TU;.-= T+ 2L The existence 
of T in ~R therefore provides a group-theoretic proof of the existence of 
incoming and outgoing subspaces for a (free) wave equation, a fact first 
recognized by Lax and Phillips and forming the starting point of their 
theory of scattering. 

There is, however, the difference that the incoming and outgoing sub- 
spaces corresponding the operator TR considered here are subspaces in the 
Hilbert space x(C~R with relativistically invariant inner product, whereas Lax 
and Phillips work in the Hilbert space (of Cauchy data) defined by the so- 
called energy norm, which is not relativistically invariant. On the other 
hand, the Lax-Phillips incoming and outgoing subspaces D and D+, and 
hence also the spectral projections of the time operator corresponding to 
them, can be described very simply: D_ consists of all solutions (with finite 
energy norm) of the wave equation that vanish inside the backward light 
cone of a given space-time point (the here and now of an observer) and D+ 
consists of those solutions that vanish inside the forward light cone of the 
given spacetime point. Such a simple description does not hold for the 
spectral projections of TR constructed here. The time operator TR given 
here in terms of the generators of the Poincar6 group and the time operator 
constructed from the incoming subspace D_ of Lax and Phillips are, 
however, connected by a transformation that allows one to determine the 
spectral projections of TR in terms of the projection onto the incoming (or 
outgoing) subspace considered by Lax and Phillips. This relationship will 
be discussed in a subsequent publication. 

Coming back to the appropriate enlargement of the phase space that 
will permit the definition of an invariant measure, we shall consider the 
space of distribution (in the sense of generalized function)-valued solutions 
of the KG equation. More precisely, we shall allow the function ~(k) 
[associated with a solution ~0(x) through formula (1)] to be in the dual 5 p' 
of the space 5 ~ of rapidly decreasing Swartz test functions on the hyper- 
boloids k 2 = m 2. If a locally integrable function of polynomial growth ~(k) 
is to be considered as a distribution, the value ( r  ~b) of the corresponding 
linear functional for a test function ~(k)e 5p is defined to be 

( qJ, r ~ - fk2_m2 ~*(k ) ~(k ) d3k = [ fk2=m2 ~(k ) q~*(k ) d3k] * 

But the 5~' is, of course, larger than the space of locally integrable 

822/48/5-6-23 
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functions. From the relation (1) between solutions ~b(x) and the 
corresponding function ~(k) on the hyperboloids, it clear that the action of 
the time evolution operator U~ on ~(k) is just that of multiplication 
operator by e ~o~, 

U~(k)  = e~~ 

This is also the action of evolution group U~ for distribution-valued 
solutions. Therefore, if the linear functional corresponding to given 
distribution-valued solution ~ assigns to the test function ~b the value 
(~,  q~), the time-evolved solution U~O will assign to ~b the value 

Now~ 

(Gq,, O)= (O, u ~ >  

d 3 k  

B(~l, 52) ----- fk2= rn x ~*(k) ~2(k) [-~01 ~- (q~102 )R 

the relativistic scalar product, defines a positive-definite quadratic form on 
5g and there exists a Gaussian measure /x on 5 ~ whose characteristic 
functional 

C(e~b) -= ;~, e '<~'~4> d/~(O) 

(for every given ~b e 5Q is given by 

C(c~b) = e -~2<+'4>R (7) 

[This follows from Minlos' theorem~4~ we have, however, glossed over the 
technical but important point that B(~I, ~2) has to be shown to be weakly 
continuous in 5~ The invariance of this measure under evolution Ut 
follows immediately because 

e i<0~4>R dll(Udp)= fy, e i<U-~'4>R d#(I)) 

= fso, e i<r d#(O ) 

=- e -  (u~.O,u~c,)R 

= e -  (r >R 

which shows that the transformed measure under U, has the same charac- 
teristic functional as the untransformed measure. 
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To sum up, the phase space for the K G  field is taken to be the space 
of distribution-valued solutions ~, 

O(x) = f~2_ m2 e'k~(k ) d3--~-k 
- I k o t  

with ~ ( k ) s s o ' ,  where 50 is the space of rapidly decreasing Swartz test 
functions ~(k) in ~r The invariant measure # on 5 ~ is the Gaussian 
measure whose characteristic functional is given by (7). Every given test 
function in ~(k) (or the corresponding solution) defines a function ~b(~,) on 
5O': ~ ~ (~ ,  ~) ,  the value of the linear functional corresponding to 
assumes on ~b. In fact, since 5O is dense in 34"R, every element in ~ defines a 
function on 5P'. These functions on measure space (5O', g) are Gaussian 
random variables with mean zero and variance 

Let us also mention that the a-algebra N of measurable subsets for # 
is the a-algebra generated by the so-called cylindrical sets on 5 p', which we 
need not describe hereJ 4~ Moreover, ~' is the smallest a-algebra with 
respect to which all functions ~(~) on Y '  with q~ E YfR are measurable. 

One can now demonstrate the K-flow flow structure of the massless 
field as follows. Let E;. be the spectral projection of the time operator T 
and D;. the subspace corresponding to E;. It is clear that 

U~D;=D;+t~D;, for t > 0  

Now, the function ~b(0) on 5 p' that a given ~b ~ Yf~ defines satisfies 

~(u,~,) = ( u  ~,~)(~,) 

o r  

where we have written ~b, to denote the time-evolved solution U~b and 
similarly 

r  u,4, 

Thus, if 6g is the smallest a-algebra of sets in 50' with respect to which 
the functions defined by a given set D of test functions are measurable, then 
Ut6g is the smallest a-algebra of sets in ~ with respect to which the 
functions defined by test functions in the set UtD are measurable. Let us 
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denote by No the smallest a-subalgebra of ~ with respect to which 
functions on 5*' defined by r belonging to Do (the subspace of the spectral 
projection E0 of T) are measurable. It then follows that N~ = U ~ o  is the 
smallest a-algebra with respect to which functions defined by C e D x -  
U;Do are measurable. Since D;. > O, it follows that ~ ~ ~o for 2 > O. In fact, 
since D;. is an increasing family of subspaces of "JC'R with 

V D;~ = Jt~R and /~ D;:= {0} 
oe < 2 <  oo - - ~ o < 2 < c c  

it follows that ~;~ ~ ~ , ,  if )~ > #, U ~ < ~. < o~ ~ .  = ~ ,  and 
0 - co < ;. < ~ ~). = the trivial ~r-algebra that consists of sets of either measure 
0 or 1. This estabishes the K-flow structure of massless K G  field. 

The preceding discussion could have been carried out in terms of the 
existence of a K-partition. In fact, the a-algebra ~o will define a partition 
~o of the phase space into disjoint cells such that every set in r will be the 
union of some of the complete cells of this partition. This partition has all 
the properties of the K-partition. All points (i.e., distribution-valued 
solutions) belonging to a single cell of ~0 have the property that they all 
assign the same value to every test function r belonging to Do. 

The partition corresponding to U;~o = ~;. will be finer (for 2 > 0) as 
-~;. = ~0- In fact, all points belonging to a single cell of ~;. will assign the 
same value to every test function r in U;Do = D~. ~ D o, This shows that the 
degree of difficulty in distinguishing the point belonging to a given single 
cell of the K-partition increases progressively with increasing time t, 
since they agree (i.e., assign the same value to every r in progressively 
increasing subspaces U,D of test functions. 

As for the massive Klein-Gorden field, there is no self-adjoint 
operator T satisfying 

U* TU, = T + tI for all real t 

However, since the evolution operators U~ in 24~a have Lebesgue 
homogeneous spectrum, one can show that for a discrete subgroup of U,, 
e.g., the subgroup U,, n = 0, + 1, +_2 ..... there exist subspaces D, in ~R 

such that: 

(i) U,.D.=-D.+. ,  

(ii) D . = D  m f o r n > m  

(iii) /~ . . . . . . .  O m =- {0} 
(iv) V . . . . . .  D . = a f  R 

Thus, by using arguments similar to the one given above, one can show 
that the discrete cascade U. of the flow U~ on 2 "  is a K-system or 
K-cascade. It is known, however, that if a discrete cascade of a flow is a 
K-system, then the entire flow is a K-flow. 
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Instead of the above discussion in terms of a-algebras, we could have 
directly proved the K-flow property of the field by showing the existence of 
an imprimitivity system of conditional expectations with respect to the 
unitary group U~ on ~ 2  (# is the invariant Gaussian measure on ~ ' )  
induced from the action of U, on 5 ~', 

(see the previous section in this connection). 
In fact, such an imprimitivity system can be obtained from the spectral 

projections E;~ of T. We cannot, however, define P;~ simply by first defining 
(P;~06)(~) = (E~b)(@) and defining it for products ~bl(~p) q~z(~) "'" by 

This is because the operator P;. thus defined will not be a projection of 
conditional expectation. This can be easily seen because the integral (I) 
j'~,P~.[~b~(~)~b2(~)]d~ would be equal to ~,(E;.~bl)(~)(E;~q~2)(~p)d p 
which is equal to (E~q~l, E~b2)R and is different from (~b 1, ~bz) R. But 
if P ;  were to be a conditional expectation the integral (I) should 
be ~,[q~l(~)q~z(gJ)]d# which equals (~bx,~b2) R. However, a slight 
modification yields the desired result. 

Let ~b~(~) be functions on 5 ~', defined by test functions ~b~ 5 f because 
of the previous consideration we define the action of P~ on functions p(~9) 
on 5 ~' not by (P~p)(~)=p(E~.~) where (E~@, q~)= 0P, E ~ ) ,  but through 
its action on the Ito-Wick polynomial which form a dense set on cd ,9o  , , ,u  �9 

Explicitly we define the action of P~ as follows 

Here the symbol :...: denotes the so-called Ite-Wick product of Gaussian 
random variable ~b~(~). For more details see Ref. 41. It now follows that P~ 
thus defined are self-adjoint projections in 2,t~ corresponding to conditional 
expectations. This follows from the fact that P~ thus defined maps the unit 
function 1 ~ 5f~ to 1 and is positivity-preserving. (4~) From the definition of 
U~ and P ;  and the fact that E~ form a system of imprimitivity for U ,  one 
can verify that P~ are an imprimitivity system for U t. 

To conclude this section, it will be interesting to indicate how the 
K-flow property of the massless KG equation will go in the setting of the 
Lax-Phillips theory of incoming and outgoing subspaces. Corresponding to 
the Hilbert space ~ we consider now the Hilbert space ~ of (real) initial 
Cauchy data 

f ~ 
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with the inner product corresponding to the so-called energy from ]l f lIE, 
which is given by 

lifll~= f d3x �89 + iv~12)= ~ d3x �89215 _ q~(x)(3@)(x)] 

The time evolution U, of Cauchy data is, as is well known, described by the 
operator-valued matrix 

_- ( cos BI B-I sin Bt~ 
Ut \ - B s i n B t  cosBt / 

where B =  ( - A )  1/2. This means that if 

~(x)) 

is the initial Cauchy data, then 

~(x, t) = cos Bt~ + B-  1 sin Bt~ 

is the solution of the wave equation with ~b(x, t = 0) = $(x) and 

~ ( x ' t )  l =re(x) ,=0 

It is known that U, defined as above is unitary with respect to the scalar 
product corresponding to the energy norm. 

Furthermore, in the Hilbert space ~ e  there exists a self-adjoint time 
operator T whose spectral projections P~. are given by U~Po U*, where Po 
is the projection onto the subspace of all (initial) real Cauchy data with 
finite norm such that the solution corresponding to them vanishes in the 
backward light cone of a fixed space-time point. In other words, Po is the 
projection onto the real subspace of the incoming subspace D considered 
byLax and Phillips. We need not give here the explicit form of 7; as it will 
be given elsewhere. For the same reasons as before one cannot find a 
measure on J/t'e that is invariant under time evolution. 

In order to define an invariant measure, we have to consider, as 
before, a larger space as the phase space of the system. This larger space is 
the set of all Swartz distribution-valued Cauchy data. In other words, the 
phase space is 

Consider the bilinear form 
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given by 

~(f ,  g) = J d3x [ - ~ ( x )  ~ - ~ ' ( x )  + ~z(x) ~'(x)3 

on Swartz test function-valued initial data; i.e., on 

Now, as before, we can define a measure # on 

whose characteristic functional 

C(~f), fe5~(nh05~(~31 
is given by 

fs e is~(-f) d#(s) = e -  ~2B(#. f} C(c~f) = '~e~ '~  

Here s denotes a Swartz distribution-valued Cauchy data, i.e., an element, 
say 

s =  e 5PI~3} | 5P(~3 ) 
$2 

and for 

s(f) denotes s1(r + s2(~). 
This measure can be shown to be invariant under time evolution of 

distribution-valued (initial) Cauchy data in accordance with the wave 
equation. We need not stop here to prove this. 

The proof of the K-flow property of the wave equation can now 
proceed as before. In fact, if s80 is the smallest ~-algebra of subsets of 

with respect to which the function s( f)= f(s) defined on 

with f o r  the form ( - # %  where (~) are in D_ and 40 is the corresponding 
partition, then it can be shown as before that 40 is a K-partition for the 
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time evolution of 5~31-valued Cauchy data. Details of these will be given 
elsewhere. Some implications of the results of this section will be briefly dis- 
cussed in the next section. 

4. C O N C L U D I N G  R E M A R K S  

The fact that the K G  field and even the wave equation have K-flow 
structure seems to be a rather unexpected result. It is true, of course, that 
this K-flow structure is visible only if one considers distribution-valued 
solutions or Cauchy data. At first sight, one might be tempted to argue 
that distribution-valued solutions or data do not correspond to physically 
realizable situations, and, as such, the K-flow structure of the field is 
devoid of physical interest. However, the mathematical analysis of many 
classical problem, e.g., in fluid dynamics, concerning propagation of 
singularities does involve consideration of distribution-valued data. Several 
physical situations, such as flashing on an extremely intense source of light 
for a very short duration, could be idealized to correspond to distribution- 
valued initial data. In view of such considerations, it seems to me that the 
demonstrated K-flow structure of the fields cannot be dismissed as bereft of 
physical interest. 

The K-flow structure of the fields implies instability of their evolution. 
At first sight, this conclusion seems to be in contradiction with the result 
concerning the dependence of solutions on initial data, say, for the wave 
equation. (42) The result alluded to here, however, says, roughly speaking, 
that given a prescribed neighborhood (9 of solution and given a time t, there 
exists a neighborhood of No(t) of initial data such that solutions 
corresponding to the data in N~(t) will be in the neighborhood for time t. 
The important point is that the neighborhood No(t ) depends on t and this 
dependence could be very irregular and for t ~ ov the neighborhood No(t) 
could shrink to a point. The dependence of N~(t) on t is, as far as I know, 
not studied in the existing literature. Thus, the result on the dependence of 
solutions on initial Cauchy data alluded to here is not in contradiction 
with the instability of evolution implied by the K-flow structure of the field. 
In fact, in view of the K-flow structure of fields established here, one can 
say, paraphrasing J. Lightbill, that there is a fundamental limitation to the 
predictibility and deterministic description of evolution even in the case of 
the good old wave equation. The implications of this limitation are the 
same as discussed in the first part of this article. 

As mentioned before, relativistic fields sere to provide the first 
examples of relativistic systems that are K-flow. One can thus study the 
relativistic transformation properties of the internal time operator and 
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other objects appearing in our theory of irreversibility. The implications 
will be the subject of subsequent publications. 

Let us conclude on a general note. Our at tempt to introduce the 
principle of irreversibility at the fundamental dynamical level has led us to 
introduce objects such as the internal time operator T, the transformation 
A constructed from it, and the semigroup W, of evolution, none of which 
are like the usual dynamical variables. In particular, we have stressed that 
these objects introduce certain nonlocal feature into the theory. (~~ They 
also do not preserve the algebraic structure of usual dynamical variables. 
(The nonlocal features that the principle of irreversibility introduces into 
the theory are exhibited even more explicitly by the consideration given 
here. Note in this connection that the time operator  T for the wave 
equation given in the previous section involves the operator  P o 2 =  - A - Z ,  
which is known to be a nonlocal operator.)  Thus, the introduction of the 
principle of irreversibility at the fundamental level of dynamics (be it 
classical, quantum, or relativistic) implies a fundamental modification and 
enlargement of the conceptual as well as mathematical  structure of these 
theories. To uncover the implications of these modifications is part  of the 
continuing search for a deeper understanding of the enigma of time, and 
this search, it seems, still holds promises of as yet undreamt of surprises. 
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